Robustness of Climate Change Information for Decisions

Workshop | Brussels, Belgium and online | April 22-24, 2024

Reference trajectory for adaptation in France:

Using regional warming levels to reduce inconsistencies in climate data

<u>Lola Corre</u>¹, Aurélien Ribes² DCSC, Météo-France, Toulouse, France CNRM, Météo-France, CNRS, Université de Toulouse, Toulouse, France

lola.corre@meteo.fr

The framework

Update of the French National Plan for Climate Change Adaptation

→ set a reference warming trajectory for adaptation (TRACC) common to all sectors and territories.

Choice of French policymakers: define 3 adaptation targets

→ 3 global warming levels (GWL) associated with 3 time horizons

2023	2030	2050	2100	
			TRACC	
1,2°C	1.5°C	2°C	3°C	

O

Liberté Égalité Fraternité

Request to the national climate service: clarify what these GWLs mean for France through a localized impact assessment.

The Global Warming Level (GWL) approach

IPCC AR6 GWL approach (Gutiérrez et al. 2021)

1. Timing of GWL

→ determine when a given GWL is likely reached

data = AR6 assessed range of projected global temperature (observational constraints on CMIP6, emulators, ...)

2. Regional response at GWL (Vautard et al. 2014)

data = regional projections (GCM*/RCM** pairs)

2.1. determine the period when a given GWL is reached

data = individual global projection (GCM)

2.2. map the climate changes over this period

data = individual regional projection (GCM/RCM)

* GCM = Global Climate Model

** RCM = Regional Climate Model

The Global Warming Level (GWL) approach

IPCC AR6 GWL approach (Gutiérrez et al. 2021)

1. Timing of GWL

→ determine when a given GWL is likely reached

data = AR6 assessed range of projected global temperature (observational constraints on CMIP6, emulators, ...)

2. Regional response at GWL (Vautard et al. 2014)

data = regional projections (GCM/RCM pairs)

2.1. determine the period when a given GWL is reached data = individual global projection (GCM)

2.2. map the climate changes over this period data = individual regional projection (GCM/RCM) Application to the metropolitan France data = biais-corrected EURO-CORDEX projections

Results:

France / global warming ratio ≈ 1

→ unrealistically small

Ribes et al. 2022 (observational constraints on CMIP6) France / global warming ratio ≈ 1.3

Known issue:

Inconsistencies between RCM and GCM projections over Europe

→ RCMs project a smaller temperature increase than GCMs

(Schwingshackl et al. 2019, Boé et al. 2020, Taranu et al. 2022, ...)

The Regional Warming Level (RWL) approach

IPCC AR6 GWL approach (Gutiérrez et al. 2021)

1. Timing of GWL

→ determine when a given GWL is likely reached

data = AR6 assessed range of projected global temperature

2. Regional response at GWL (Vautard et al. 2014)

data = regional projections (GCM/RCM)

2.1. determine the period when a given GWL is reached

data = individual global projection (GCM)

2.2. map the climate changes over this perioddata = individual regional projection (GCM/RCM)

RWL approach (Corre and Ribes, in prep.)

1.1 Timing of GWL

→ determine when a given GWL is likely reached

data = obs. constrained CMIP6 global temperature (Ribes et al. 2021)

1.2 Corresponding RWL

data = obs. constrained CMIP6 France temperature (Ribes et al. 2022)

2. Regional response at RWL

data = regional projections (GCM/RCM)

2.1. determine the period when a given RWL is reached

data = individual regional projection (GCM/RCM)

2.2. map the climate changes over this period

data = individual regional projection (GCM/RCM)

The Regional Warming Level (RWL) approach

Results:

- → upward revision of the warming in France
- → impacts associated with a given level of warming are arriving earlier than predicted by RCM projections

→ simple and relevant methodology for reassessing projected future climate without having to rerun regional simulations.

RWL approach (Corre and Ribes, in prep.)

1.1 Timing of GWL

→ determine when a given GWL is likely reached data = obs. constrained CMIP6 global temperature (Ribes et al. 2021)

1.2 Corresponding RWL

data = obs. constrained CMIP6 France temperature (Ribes et al. 2022)

2. Regional response at RWL

data = regional projections (GCM/RCM)

- 2.1. determine the period when a given RWL is reached data = individual regional projection (GCM/RCM)
- 2.2. map the climate changes over this period data = individual regional projection (GCM/RCM)

Pros and cons of defining a unique trajectory for adaptation

Strong reduction in the range of future climates to prepare for

Defining a unique trajectory

 \rightarrow ignoring uncertainty in emissions scenarios

Targeting specific levels of warming

 \rightarrow

 \rightarrow

Focusing on a given RWL

reducing uncertainty related to the models sensitivity

ignoring the uncertainty in the RWL /GWL ratio

Political choices and expert judgment

How stakeholders perceive it?

- general public: giving up the fight against global warming
 - → difficulty in separating adaptation and mitigation targets
- adaptation actors: a major progress for many sectors
 - → facilitating adaptation action planning
 - → ensuring standardization across sectors and territories
 - linking with IPCC and international negotiations

But it does not cover the needs of all sectors (safety-related activities: need for worst-case scenarios)